3.31 \(\int x^3 (a+b \text{csch}(c+d \sqrt{x})) \, dx\)

Optimal. Leaf size=356 \[ -\frac{14 b x^3 \text{PolyLog}\left (2,-e^{c+d \sqrt{x}}\right )}{d^2}+\frac{14 b x^3 \text{PolyLog}\left (2,e^{c+d \sqrt{x}}\right )}{d^2}+\frac{84 b x^{5/2} \text{PolyLog}\left (3,-e^{c+d \sqrt{x}}\right )}{d^3}-\frac{84 b x^{5/2} \text{PolyLog}\left (3,e^{c+d \sqrt{x}}\right )}{d^3}-\frac{420 b x^2 \text{PolyLog}\left (4,-e^{c+d \sqrt{x}}\right )}{d^4}+\frac{420 b x^2 \text{PolyLog}\left (4,e^{c+d \sqrt{x}}\right )}{d^4}+\frac{1680 b x^{3/2} \text{PolyLog}\left (5,-e^{c+d \sqrt{x}}\right )}{d^5}-\frac{1680 b x^{3/2} \text{PolyLog}\left (5,e^{c+d \sqrt{x}}\right )}{d^5}-\frac{5040 b x \text{PolyLog}\left (6,-e^{c+d \sqrt{x}}\right )}{d^6}+\frac{5040 b x \text{PolyLog}\left (6,e^{c+d \sqrt{x}}\right )}{d^6}+\frac{10080 b \sqrt{x} \text{PolyLog}\left (7,-e^{c+d \sqrt{x}}\right )}{d^7}-\frac{10080 b \sqrt{x} \text{PolyLog}\left (7,e^{c+d \sqrt{x}}\right )}{d^7}-\frac{10080 b \text{PolyLog}\left (8,-e^{c+d \sqrt{x}}\right )}{d^8}+\frac{10080 b \text{PolyLog}\left (8,e^{c+d \sqrt{x}}\right )}{d^8}+\frac{a x^4}{4}-\frac{4 b x^{7/2} \tanh ^{-1}\left (e^{c+d \sqrt{x}}\right )}{d} \]

[Out]

(a*x^4)/4 - (4*b*x^(7/2)*ArcTanh[E^(c + d*Sqrt[x])])/d - (14*b*x^3*PolyLog[2, -E^(c + d*Sqrt[x])])/d^2 + (14*b
*x^3*PolyLog[2, E^(c + d*Sqrt[x])])/d^2 + (84*b*x^(5/2)*PolyLog[3, -E^(c + d*Sqrt[x])])/d^3 - (84*b*x^(5/2)*Po
lyLog[3, E^(c + d*Sqrt[x])])/d^3 - (420*b*x^2*PolyLog[4, -E^(c + d*Sqrt[x])])/d^4 + (420*b*x^2*PolyLog[4, E^(c
 + d*Sqrt[x])])/d^4 + (1680*b*x^(3/2)*PolyLog[5, -E^(c + d*Sqrt[x])])/d^5 - (1680*b*x^(3/2)*PolyLog[5, E^(c +
d*Sqrt[x])])/d^5 - (5040*b*x*PolyLog[6, -E^(c + d*Sqrt[x])])/d^6 + (5040*b*x*PolyLog[6, E^(c + d*Sqrt[x])])/d^
6 + (10080*b*Sqrt[x]*PolyLog[7, -E^(c + d*Sqrt[x])])/d^7 - (10080*b*Sqrt[x]*PolyLog[7, E^(c + d*Sqrt[x])])/d^7
 - (10080*b*PolyLog[8, -E^(c + d*Sqrt[x])])/d^8 + (10080*b*PolyLog[8, E^(c + d*Sqrt[x])])/d^8

________________________________________________________________________________________

Rubi [A]  time = 0.400911, antiderivative size = 356, normalized size of antiderivative = 1., number of steps used = 20, number of rules used = 7, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.389, Rules used = {14, 5437, 4182, 2531, 6609, 2282, 6589} \[ -\frac{14 b x^3 \text{PolyLog}\left (2,-e^{c+d \sqrt{x}}\right )}{d^2}+\frac{14 b x^3 \text{PolyLog}\left (2,e^{c+d \sqrt{x}}\right )}{d^2}+\frac{84 b x^{5/2} \text{PolyLog}\left (3,-e^{c+d \sqrt{x}}\right )}{d^3}-\frac{84 b x^{5/2} \text{PolyLog}\left (3,e^{c+d \sqrt{x}}\right )}{d^3}-\frac{420 b x^2 \text{PolyLog}\left (4,-e^{c+d \sqrt{x}}\right )}{d^4}+\frac{420 b x^2 \text{PolyLog}\left (4,e^{c+d \sqrt{x}}\right )}{d^4}+\frac{1680 b x^{3/2} \text{PolyLog}\left (5,-e^{c+d \sqrt{x}}\right )}{d^5}-\frac{1680 b x^{3/2} \text{PolyLog}\left (5,e^{c+d \sqrt{x}}\right )}{d^5}-\frac{5040 b x \text{PolyLog}\left (6,-e^{c+d \sqrt{x}}\right )}{d^6}+\frac{5040 b x \text{PolyLog}\left (6,e^{c+d \sqrt{x}}\right )}{d^6}+\frac{10080 b \sqrt{x} \text{PolyLog}\left (7,-e^{c+d \sqrt{x}}\right )}{d^7}-\frac{10080 b \sqrt{x} \text{PolyLog}\left (7,e^{c+d \sqrt{x}}\right )}{d^7}-\frac{10080 b \text{PolyLog}\left (8,-e^{c+d \sqrt{x}}\right )}{d^8}+\frac{10080 b \text{PolyLog}\left (8,e^{c+d \sqrt{x}}\right )}{d^8}+\frac{a x^4}{4}-\frac{4 b x^{7/2} \tanh ^{-1}\left (e^{c+d \sqrt{x}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Int[x^3*(a + b*Csch[c + d*Sqrt[x]]),x]

[Out]

(a*x^4)/4 - (4*b*x^(7/2)*ArcTanh[E^(c + d*Sqrt[x])])/d - (14*b*x^3*PolyLog[2, -E^(c + d*Sqrt[x])])/d^2 + (14*b
*x^3*PolyLog[2, E^(c + d*Sqrt[x])])/d^2 + (84*b*x^(5/2)*PolyLog[3, -E^(c + d*Sqrt[x])])/d^3 - (84*b*x^(5/2)*Po
lyLog[3, E^(c + d*Sqrt[x])])/d^3 - (420*b*x^2*PolyLog[4, -E^(c + d*Sqrt[x])])/d^4 + (420*b*x^2*PolyLog[4, E^(c
 + d*Sqrt[x])])/d^4 + (1680*b*x^(3/2)*PolyLog[5, -E^(c + d*Sqrt[x])])/d^5 - (1680*b*x^(3/2)*PolyLog[5, E^(c +
d*Sqrt[x])])/d^5 - (5040*b*x*PolyLog[6, -E^(c + d*Sqrt[x])])/d^6 + (5040*b*x*PolyLog[6, E^(c + d*Sqrt[x])])/d^
6 + (10080*b*Sqrt[x]*PolyLog[7, -E^(c + d*Sqrt[x])])/d^7 - (10080*b*Sqrt[x]*PolyLog[7, E^(c + d*Sqrt[x])])/d^7
 - (10080*b*PolyLog[8, -E^(c + d*Sqrt[x])])/d^8 + (10080*b*PolyLog[8, E^(c + d*Sqrt[x])])/d^8

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 5437

Int[((a_.) + Csch[(c_.) + (d_.)*(x_)^(n_)]*(b_.))^(p_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simpli
fy[(m + 1)/n] - 1)*(a + b*Csch[c + d*x])^p, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p}, x] && IGtQ[Simplif
y[(m + 1)/n], 0] && IntegerQ[p]

Rule 4182

Int[csc[(e_.) + (Complex[0, fz_])*(f_.)*(x_)]*((c_.) + (d_.)*(x_))^(m_.), x_Symbol] :> Simp[(-2*(c + d*x)^m*Ar
cTanh[E^(-(I*e) + f*fz*x)])/(f*fz*I), x] + (-Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 - E^(-(I*e) + f*
fz*x)], x], x] + Dist[(d*m)/(f*fz*I), Int[(c + d*x)^(m - 1)*Log[1 + E^(-(I*e) + f*fz*x)], x], x]) /; FreeQ[{c,
 d, e, f, fz}, x] && IGtQ[m, 0]

Rule 2531

Int[Log[1 + (e_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(n_.)]*((f_.) + (g_.)*(x_))^(m_.), x_Symbol] :> -Simp[((
f + g*x)^m*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)])/(b*c*n*Log[F]), x] + Dist[(g*m)/(b*c*n*Log[F]), Int[(f + g*x)
^(m - 1)*PolyLog[2, -(e*(F^(c*(a + b*x)))^n)], x], x] /; FreeQ[{F, a, b, c, e, f, g, n}, x] && GtQ[m, 0]

Rule 6609

Int[((e_.) + (f_.)*(x_))^(m_.)*PolyLog[n_, (d_.)*((F_)^((c_.)*((a_.) + (b_.)*(x_))))^(p_.)], x_Symbol] :> Simp
[((e + f*x)^m*PolyLog[n + 1, d*(F^(c*(a + b*x)))^p])/(b*c*p*Log[F]), x] - Dist[(f*m)/(b*c*p*Log[F]), Int[(e +
f*x)^(m - 1)*PolyLog[n + 1, d*(F^(c*(a + b*x)))^p], x], x] /; FreeQ[{F, a, b, c, d, e, f, n, p}, x] && GtQ[m,
0]

Rule 2282

Int[u_, x_Symbol] :> With[{v = FunctionOfExponential[u, x]}, Dist[v/D[v, x], Subst[Int[FunctionOfExponentialFu
nction[u, x]/x, x], x, v], x]] /; FunctionOfExponentialQ[u, x] &&  !MatchQ[u, (w_)*((a_.)*(v_)^(n_))^(m_) /; F
reeQ[{a, m, n}, x] && IntegerQ[m*n]] &&  !MatchQ[u, E^((c_.)*((a_.) + (b_.)*x))*(F_)[v_] /; FreeQ[{a, b, c}, x
] && InverseFunctionQ[F[x]]]

Rule 6589

Int[PolyLog[n_, (c_.)*((a_.) + (b_.)*(x_))^(p_.)]/((d_.) + (e_.)*(x_)), x_Symbol] :> Simp[PolyLog[n + 1, c*(a
+ b*x)^p]/(e*p), x] /; FreeQ[{a, b, c, d, e, n, p}, x] && EqQ[b*d, a*e]

Rubi steps

\begin{align*} \int x^3 \left (a+b \text{csch}\left (c+d \sqrt{x}\right )\right ) \, dx &=\int \left (a x^3+b x^3 \text{csch}\left (c+d \sqrt{x}\right )\right ) \, dx\\ &=\frac{a x^4}{4}+b \int x^3 \text{csch}\left (c+d \sqrt{x}\right ) \, dx\\ &=\frac{a x^4}{4}+(2 b) \operatorname{Subst}\left (\int x^7 \text{csch}(c+d x) \, dx,x,\sqrt{x}\right )\\ &=\frac{a x^4}{4}-\frac{4 b x^{7/2} \tanh ^{-1}\left (e^{c+d \sqrt{x}}\right )}{d}-\frac{(14 b) \operatorname{Subst}\left (\int x^6 \log \left (1-e^{c+d x}\right ) \, dx,x,\sqrt{x}\right )}{d}+\frac{(14 b) \operatorname{Subst}\left (\int x^6 \log \left (1+e^{c+d x}\right ) \, dx,x,\sqrt{x}\right )}{d}\\ &=\frac{a x^4}{4}-\frac{4 b x^{7/2} \tanh ^{-1}\left (e^{c+d \sqrt{x}}\right )}{d}-\frac{14 b x^3 \text{Li}_2\left (-e^{c+d \sqrt{x}}\right )}{d^2}+\frac{14 b x^3 \text{Li}_2\left (e^{c+d \sqrt{x}}\right )}{d^2}+\frac{(84 b) \operatorname{Subst}\left (\int x^5 \text{Li}_2\left (-e^{c+d x}\right ) \, dx,x,\sqrt{x}\right )}{d^2}-\frac{(84 b) \operatorname{Subst}\left (\int x^5 \text{Li}_2\left (e^{c+d x}\right ) \, dx,x,\sqrt{x}\right )}{d^2}\\ &=\frac{a x^4}{4}-\frac{4 b x^{7/2} \tanh ^{-1}\left (e^{c+d \sqrt{x}}\right )}{d}-\frac{14 b x^3 \text{Li}_2\left (-e^{c+d \sqrt{x}}\right )}{d^2}+\frac{14 b x^3 \text{Li}_2\left (e^{c+d \sqrt{x}}\right )}{d^2}+\frac{84 b x^{5/2} \text{Li}_3\left (-e^{c+d \sqrt{x}}\right )}{d^3}-\frac{84 b x^{5/2} \text{Li}_3\left (e^{c+d \sqrt{x}}\right )}{d^3}-\frac{(420 b) \operatorname{Subst}\left (\int x^4 \text{Li}_3\left (-e^{c+d x}\right ) \, dx,x,\sqrt{x}\right )}{d^3}+\frac{(420 b) \operatorname{Subst}\left (\int x^4 \text{Li}_3\left (e^{c+d x}\right ) \, dx,x,\sqrt{x}\right )}{d^3}\\ &=\frac{a x^4}{4}-\frac{4 b x^{7/2} \tanh ^{-1}\left (e^{c+d \sqrt{x}}\right )}{d}-\frac{14 b x^3 \text{Li}_2\left (-e^{c+d \sqrt{x}}\right )}{d^2}+\frac{14 b x^3 \text{Li}_2\left (e^{c+d \sqrt{x}}\right )}{d^2}+\frac{84 b x^{5/2} \text{Li}_3\left (-e^{c+d \sqrt{x}}\right )}{d^3}-\frac{84 b x^{5/2} \text{Li}_3\left (e^{c+d \sqrt{x}}\right )}{d^3}-\frac{420 b x^2 \text{Li}_4\left (-e^{c+d \sqrt{x}}\right )}{d^4}+\frac{420 b x^2 \text{Li}_4\left (e^{c+d \sqrt{x}}\right )}{d^4}+\frac{(1680 b) \operatorname{Subst}\left (\int x^3 \text{Li}_4\left (-e^{c+d x}\right ) \, dx,x,\sqrt{x}\right )}{d^4}-\frac{(1680 b) \operatorname{Subst}\left (\int x^3 \text{Li}_4\left (e^{c+d x}\right ) \, dx,x,\sqrt{x}\right )}{d^4}\\ &=\frac{a x^4}{4}-\frac{4 b x^{7/2} \tanh ^{-1}\left (e^{c+d \sqrt{x}}\right )}{d}-\frac{14 b x^3 \text{Li}_2\left (-e^{c+d \sqrt{x}}\right )}{d^2}+\frac{14 b x^3 \text{Li}_2\left (e^{c+d \sqrt{x}}\right )}{d^2}+\frac{84 b x^{5/2} \text{Li}_3\left (-e^{c+d \sqrt{x}}\right )}{d^3}-\frac{84 b x^{5/2} \text{Li}_3\left (e^{c+d \sqrt{x}}\right )}{d^3}-\frac{420 b x^2 \text{Li}_4\left (-e^{c+d \sqrt{x}}\right )}{d^4}+\frac{420 b x^2 \text{Li}_4\left (e^{c+d \sqrt{x}}\right )}{d^4}+\frac{1680 b x^{3/2} \text{Li}_5\left (-e^{c+d \sqrt{x}}\right )}{d^5}-\frac{1680 b x^{3/2} \text{Li}_5\left (e^{c+d \sqrt{x}}\right )}{d^5}-\frac{(5040 b) \operatorname{Subst}\left (\int x^2 \text{Li}_5\left (-e^{c+d x}\right ) \, dx,x,\sqrt{x}\right )}{d^5}+\frac{(5040 b) \operatorname{Subst}\left (\int x^2 \text{Li}_5\left (e^{c+d x}\right ) \, dx,x,\sqrt{x}\right )}{d^5}\\ &=\frac{a x^4}{4}-\frac{4 b x^{7/2} \tanh ^{-1}\left (e^{c+d \sqrt{x}}\right )}{d}-\frac{14 b x^3 \text{Li}_2\left (-e^{c+d \sqrt{x}}\right )}{d^2}+\frac{14 b x^3 \text{Li}_2\left (e^{c+d \sqrt{x}}\right )}{d^2}+\frac{84 b x^{5/2} \text{Li}_3\left (-e^{c+d \sqrt{x}}\right )}{d^3}-\frac{84 b x^{5/2} \text{Li}_3\left (e^{c+d \sqrt{x}}\right )}{d^3}-\frac{420 b x^2 \text{Li}_4\left (-e^{c+d \sqrt{x}}\right )}{d^4}+\frac{420 b x^2 \text{Li}_4\left (e^{c+d \sqrt{x}}\right )}{d^4}+\frac{1680 b x^{3/2} \text{Li}_5\left (-e^{c+d \sqrt{x}}\right )}{d^5}-\frac{1680 b x^{3/2} \text{Li}_5\left (e^{c+d \sqrt{x}}\right )}{d^5}-\frac{5040 b x \text{Li}_6\left (-e^{c+d \sqrt{x}}\right )}{d^6}+\frac{5040 b x \text{Li}_6\left (e^{c+d \sqrt{x}}\right )}{d^6}+\frac{(10080 b) \operatorname{Subst}\left (\int x \text{Li}_6\left (-e^{c+d x}\right ) \, dx,x,\sqrt{x}\right )}{d^6}-\frac{(10080 b) \operatorname{Subst}\left (\int x \text{Li}_6\left (e^{c+d x}\right ) \, dx,x,\sqrt{x}\right )}{d^6}\\ &=\frac{a x^4}{4}-\frac{4 b x^{7/2} \tanh ^{-1}\left (e^{c+d \sqrt{x}}\right )}{d}-\frac{14 b x^3 \text{Li}_2\left (-e^{c+d \sqrt{x}}\right )}{d^2}+\frac{14 b x^3 \text{Li}_2\left (e^{c+d \sqrt{x}}\right )}{d^2}+\frac{84 b x^{5/2} \text{Li}_3\left (-e^{c+d \sqrt{x}}\right )}{d^3}-\frac{84 b x^{5/2} \text{Li}_3\left (e^{c+d \sqrt{x}}\right )}{d^3}-\frac{420 b x^2 \text{Li}_4\left (-e^{c+d \sqrt{x}}\right )}{d^4}+\frac{420 b x^2 \text{Li}_4\left (e^{c+d \sqrt{x}}\right )}{d^4}+\frac{1680 b x^{3/2} \text{Li}_5\left (-e^{c+d \sqrt{x}}\right )}{d^5}-\frac{1680 b x^{3/2} \text{Li}_5\left (e^{c+d \sqrt{x}}\right )}{d^5}-\frac{5040 b x \text{Li}_6\left (-e^{c+d \sqrt{x}}\right )}{d^6}+\frac{5040 b x \text{Li}_6\left (e^{c+d \sqrt{x}}\right )}{d^6}+\frac{10080 b \sqrt{x} \text{Li}_7\left (-e^{c+d \sqrt{x}}\right )}{d^7}-\frac{10080 b \sqrt{x} \text{Li}_7\left (e^{c+d \sqrt{x}}\right )}{d^7}-\frac{(10080 b) \operatorname{Subst}\left (\int \text{Li}_7\left (-e^{c+d x}\right ) \, dx,x,\sqrt{x}\right )}{d^7}+\frac{(10080 b) \operatorname{Subst}\left (\int \text{Li}_7\left (e^{c+d x}\right ) \, dx,x,\sqrt{x}\right )}{d^7}\\ &=\frac{a x^4}{4}-\frac{4 b x^{7/2} \tanh ^{-1}\left (e^{c+d \sqrt{x}}\right )}{d}-\frac{14 b x^3 \text{Li}_2\left (-e^{c+d \sqrt{x}}\right )}{d^2}+\frac{14 b x^3 \text{Li}_2\left (e^{c+d \sqrt{x}}\right )}{d^2}+\frac{84 b x^{5/2} \text{Li}_3\left (-e^{c+d \sqrt{x}}\right )}{d^3}-\frac{84 b x^{5/2} \text{Li}_3\left (e^{c+d \sqrt{x}}\right )}{d^3}-\frac{420 b x^2 \text{Li}_4\left (-e^{c+d \sqrt{x}}\right )}{d^4}+\frac{420 b x^2 \text{Li}_4\left (e^{c+d \sqrt{x}}\right )}{d^4}+\frac{1680 b x^{3/2} \text{Li}_5\left (-e^{c+d \sqrt{x}}\right )}{d^5}-\frac{1680 b x^{3/2} \text{Li}_5\left (e^{c+d \sqrt{x}}\right )}{d^5}-\frac{5040 b x \text{Li}_6\left (-e^{c+d \sqrt{x}}\right )}{d^6}+\frac{5040 b x \text{Li}_6\left (e^{c+d \sqrt{x}}\right )}{d^6}+\frac{10080 b \sqrt{x} \text{Li}_7\left (-e^{c+d \sqrt{x}}\right )}{d^7}-\frac{10080 b \sqrt{x} \text{Li}_7\left (e^{c+d \sqrt{x}}\right )}{d^7}-\frac{(10080 b) \operatorname{Subst}\left (\int \frac{\text{Li}_7(-x)}{x} \, dx,x,e^{c+d \sqrt{x}}\right )}{d^8}+\frac{(10080 b) \operatorname{Subst}\left (\int \frac{\text{Li}_7(x)}{x} \, dx,x,e^{c+d \sqrt{x}}\right )}{d^8}\\ &=\frac{a x^4}{4}-\frac{4 b x^{7/2} \tanh ^{-1}\left (e^{c+d \sqrt{x}}\right )}{d}-\frac{14 b x^3 \text{Li}_2\left (-e^{c+d \sqrt{x}}\right )}{d^2}+\frac{14 b x^3 \text{Li}_2\left (e^{c+d \sqrt{x}}\right )}{d^2}+\frac{84 b x^{5/2} \text{Li}_3\left (-e^{c+d \sqrt{x}}\right )}{d^3}-\frac{84 b x^{5/2} \text{Li}_3\left (e^{c+d \sqrt{x}}\right )}{d^3}-\frac{420 b x^2 \text{Li}_4\left (-e^{c+d \sqrt{x}}\right )}{d^4}+\frac{420 b x^2 \text{Li}_4\left (e^{c+d \sqrt{x}}\right )}{d^4}+\frac{1680 b x^{3/2} \text{Li}_5\left (-e^{c+d \sqrt{x}}\right )}{d^5}-\frac{1680 b x^{3/2} \text{Li}_5\left (e^{c+d \sqrt{x}}\right )}{d^5}-\frac{5040 b x \text{Li}_6\left (-e^{c+d \sqrt{x}}\right )}{d^6}+\frac{5040 b x \text{Li}_6\left (e^{c+d \sqrt{x}}\right )}{d^6}+\frac{10080 b \sqrt{x} \text{Li}_7\left (-e^{c+d \sqrt{x}}\right )}{d^7}-\frac{10080 b \sqrt{x} \text{Li}_7\left (e^{c+d \sqrt{x}}\right )}{d^7}-\frac{10080 b \text{Li}_8\left (-e^{c+d \sqrt{x}}\right )}{d^8}+\frac{10080 b \text{Li}_8\left (e^{c+d \sqrt{x}}\right )}{d^8}\\ \end{align*}

Mathematica [A]  time = 2.69091, size = 365, normalized size = 1.03 \[ \frac{2 b \left (-7 d^6 x^3 \text{PolyLog}\left (2,-e^{c+d \sqrt{x}}\right )+7 d^6 x^3 \text{PolyLog}\left (2,e^{c+d \sqrt{x}}\right )+42 d^5 x^{5/2} \text{PolyLog}\left (3,-e^{c+d \sqrt{x}}\right )-42 d^5 x^{5/2} \text{PolyLog}\left (3,e^{c+d \sqrt{x}}\right )-210 d^4 x^2 \text{PolyLog}\left (4,-e^{c+d \sqrt{x}}\right )+210 d^4 x^2 \text{PolyLog}\left (4,e^{c+d \sqrt{x}}\right )+840 d^3 x^{3/2} \text{PolyLog}\left (5,-e^{c+d \sqrt{x}}\right )-840 d^3 x^{3/2} \text{PolyLog}\left (5,e^{c+d \sqrt{x}}\right )-2520 d^2 x \text{PolyLog}\left (6,-e^{c+d \sqrt{x}}\right )+2520 d^2 x \text{PolyLog}\left (6,e^{c+d \sqrt{x}}\right )+5040 d \sqrt{x} \text{PolyLog}\left (7,-e^{c+d \sqrt{x}}\right )-5040 d \sqrt{x} \text{PolyLog}\left (7,e^{c+d \sqrt{x}}\right )-5040 \text{PolyLog}\left (8,-e^{c+d \sqrt{x}}\right )+5040 \text{PolyLog}\left (8,e^{c+d \sqrt{x}}\right )+d^7 x^{7/2} \log \left (1-e^{c+d \sqrt{x}}\right )-d^7 x^{7/2} \log \left (e^{c+d \sqrt{x}}+1\right )\right )}{d^8}+\frac{a x^4}{4} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3*(a + b*Csch[c + d*Sqrt[x]]),x]

[Out]

(a*x^4)/4 + (2*b*(d^7*x^(7/2)*Log[1 - E^(c + d*Sqrt[x])] - d^7*x^(7/2)*Log[1 + E^(c + d*Sqrt[x])] - 7*d^6*x^3*
PolyLog[2, -E^(c + d*Sqrt[x])] + 7*d^6*x^3*PolyLog[2, E^(c + d*Sqrt[x])] + 42*d^5*x^(5/2)*PolyLog[3, -E^(c + d
*Sqrt[x])] - 42*d^5*x^(5/2)*PolyLog[3, E^(c + d*Sqrt[x])] - 210*d^4*x^2*PolyLog[4, -E^(c + d*Sqrt[x])] + 210*d
^4*x^2*PolyLog[4, E^(c + d*Sqrt[x])] + 840*d^3*x^(3/2)*PolyLog[5, -E^(c + d*Sqrt[x])] - 840*d^3*x^(3/2)*PolyLo
g[5, E^(c + d*Sqrt[x])] - 2520*d^2*x*PolyLog[6, -E^(c + d*Sqrt[x])] + 2520*d^2*x*PolyLog[6, E^(c + d*Sqrt[x])]
 + 5040*d*Sqrt[x]*PolyLog[7, -E^(c + d*Sqrt[x])] - 5040*d*Sqrt[x]*PolyLog[7, E^(c + d*Sqrt[x])] - 5040*PolyLog
[8, -E^(c + d*Sqrt[x])] + 5040*PolyLog[8, E^(c + d*Sqrt[x])]))/d^8

________________________________________________________________________________________

Maple [F]  time = 0.1, size = 0, normalized size = 0. \begin{align*} \int{x}^{3} \left ( a+b{\rm csch} \left (c+d\sqrt{x}\right ) \right ) \, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3*(a+b*csch(c+d*x^(1/2))),x)

[Out]

int(x^3*(a+b*csch(c+d*x^(1/2))),x)

________________________________________________________________________________________

Maxima [A]  time = 2.06858, size = 471, normalized size = 1.32 \begin{align*} \frac{1}{4} \, a x^{4} - \frac{2 \,{\left (\log \left (e^{\left (d \sqrt{x} + c\right )} + 1\right ) \log \left (e^{\left (d \sqrt{x}\right )}\right )^{7} + 7 \,{\rm Li}_2\left (-e^{\left (d \sqrt{x} + c\right )}\right ) \log \left (e^{\left (d \sqrt{x}\right )}\right )^{6} - 42 \, \log \left (e^{\left (d \sqrt{x}\right )}\right )^{5}{\rm Li}_{3}(-e^{\left (d \sqrt{x} + c\right )}) + 210 \, \log \left (e^{\left (d \sqrt{x}\right )}\right )^{4}{\rm Li}_{4}(-e^{\left (d \sqrt{x} + c\right )}) - 840 \, \log \left (e^{\left (d \sqrt{x}\right )}\right )^{3}{\rm Li}_{5}(-e^{\left (d \sqrt{x} + c\right )}) + 2520 \, \log \left (e^{\left (d \sqrt{x}\right )}\right )^{2}{\rm Li}_{6}(-e^{\left (d \sqrt{x} + c\right )}) - 5040 \, \log \left (e^{\left (d \sqrt{x}\right )}\right ){\rm Li}_{7}(-e^{\left (d \sqrt{x} + c\right )}) + 5040 \,{\rm Li}_{8}(-e^{\left (d \sqrt{x} + c\right )})\right )} b}{d^{8}} + \frac{2 \,{\left (\log \left (-e^{\left (d \sqrt{x} + c\right )} + 1\right ) \log \left (e^{\left (d \sqrt{x}\right )}\right )^{7} + 7 \,{\rm Li}_2\left (e^{\left (d \sqrt{x} + c\right )}\right ) \log \left (e^{\left (d \sqrt{x}\right )}\right )^{6} - 42 \, \log \left (e^{\left (d \sqrt{x}\right )}\right )^{5}{\rm Li}_{3}(e^{\left (d \sqrt{x} + c\right )}) + 210 \, \log \left (e^{\left (d \sqrt{x}\right )}\right )^{4}{\rm Li}_{4}(e^{\left (d \sqrt{x} + c\right )}) - 840 \, \log \left (e^{\left (d \sqrt{x}\right )}\right )^{3}{\rm Li}_{5}(e^{\left (d \sqrt{x} + c\right )}) + 2520 \, \log \left (e^{\left (d \sqrt{x}\right )}\right )^{2}{\rm Li}_{6}(e^{\left (d \sqrt{x} + c\right )}) - 5040 \, \log \left (e^{\left (d \sqrt{x}\right )}\right ){\rm Li}_{7}(e^{\left (d \sqrt{x} + c\right )}) + 5040 \,{\rm Li}_{8}(e^{\left (d \sqrt{x} + c\right )})\right )} b}{d^{8}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*csch(c+d*x^(1/2))),x, algorithm="maxima")

[Out]

1/4*a*x^4 - 2*(log(e^(d*sqrt(x) + c) + 1)*log(e^(d*sqrt(x)))^7 + 7*dilog(-e^(d*sqrt(x) + c))*log(e^(d*sqrt(x))
)^6 - 42*log(e^(d*sqrt(x)))^5*polylog(3, -e^(d*sqrt(x) + c)) + 210*log(e^(d*sqrt(x)))^4*polylog(4, -e^(d*sqrt(
x) + c)) - 840*log(e^(d*sqrt(x)))^3*polylog(5, -e^(d*sqrt(x) + c)) + 2520*log(e^(d*sqrt(x)))^2*polylog(6, -e^(
d*sqrt(x) + c)) - 5040*log(e^(d*sqrt(x)))*polylog(7, -e^(d*sqrt(x) + c)) + 5040*polylog(8, -e^(d*sqrt(x) + c))
)*b/d^8 + 2*(log(-e^(d*sqrt(x) + c) + 1)*log(e^(d*sqrt(x)))^7 + 7*dilog(e^(d*sqrt(x) + c))*log(e^(d*sqrt(x)))^
6 - 42*log(e^(d*sqrt(x)))^5*polylog(3, e^(d*sqrt(x) + c)) + 210*log(e^(d*sqrt(x)))^4*polylog(4, e^(d*sqrt(x) +
 c)) - 840*log(e^(d*sqrt(x)))^3*polylog(5, e^(d*sqrt(x) + c)) + 2520*log(e^(d*sqrt(x)))^2*polylog(6, e^(d*sqrt
(x) + c)) - 5040*log(e^(d*sqrt(x)))*polylog(7, e^(d*sqrt(x) + c)) + 5040*polylog(8, e^(d*sqrt(x) + c)))*b/d^8

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (b x^{3} \operatorname{csch}\left (d \sqrt{x} + c\right ) + a x^{3}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*csch(c+d*x^(1/2))),x, algorithm="fricas")

[Out]

integral(b*x^3*csch(d*sqrt(x) + c) + a*x^3, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int x^{3} \left (a + b \operatorname{csch}{\left (c + d \sqrt{x} \right )}\right )\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3*(a+b*csch(c+d*x**(1/2))),x)

[Out]

Integral(x**3*(a + b*csch(c + d*sqrt(x))), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (b \operatorname{csch}\left (d \sqrt{x} + c\right ) + a\right )} x^{3}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3*(a+b*csch(c+d*x^(1/2))),x, algorithm="giac")

[Out]

integrate((b*csch(d*sqrt(x) + c) + a)*x^3, x)